ASSIGNMENT SET - I

Department of Mathematics
 Mugberia Gangadhar Mahavidyalaya

B.Sc Hon.(CBCS)

Mathematics: Semester-IV
Paper Code: C8T
[Riemann Integration and Series of Function]
Answer all the questions

1. Let a function $f:[a, b] \rightarrow \mathbb{R}$ be bounded on $[\mathrm{a}, \mathrm{b}]$ and let f be continuous on $[a, b]$ except for a finite number of points in $[a$, $b]$. Then f is Integrable on $[a, b]$.
2. Define uniform convergent of a sequence. A sequence of function $\left\{f_{n}\right\}$ is defined by $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}, \quad 0 \leq x \leq 1$. Show that the sequence $\left\{f_{n}\right\}$ is not uniformly convergent on $[0,1]$.
3. A function f is defined on $[0,1]$ by $\mathrm{f}(\mathrm{x})=\sin x$, if x is rational and $f(x)=x$, if x is irrational (i) Evaluate upper and lower integral of f on $\left[0, \frac{\pi}{2}\right]$. (ii) Show that f is not integrable on $\left[0, \frac{\pi}{2}\right]$.
4. Let $f(x)=x[x], x \in[0,3]$. Show that f is Integrable on $[0,3]$. Evaluate $\int_{0}^{3} f$.
5. A function f is continuous on \mathbb{R} and $\int_{-x}^{x} f(t)=0$ for all $\mathrm{x} \in \mathbb{R}$.Prove that f is an odd function on \mathbb{R}.
6. Examine the convergence of the improper integrals.
(i) $\int_{0}^{1} \frac{1}{\sqrt{x(1-x)}} d x$ (ii) $\int_{0}^{1} \log x \mathrm{dx}$
7. let $D \subset \mathbb{R} \mathrm{n} \in \mathbb{N}, f_{n}: D \rightarrow \mathbb{R}$ is continue on D then show that the uniform converges of the sequence $\left\{f_{n}\right\}$ on D is a sufficient but not a necessary condition for continuity of the limit function on D.
8. Let $\sum a_{n} x^{n}$ be a power series with radius of onvergenceR (>0).Let $f(x)$ be sum of the power series on $(-$ $R, R)$.Then prove that $f(x)$ is continuous on $(-R, R)$.
9. If $\mathrm{f}(\mathrm{x})$ be the sum of the series $e^{-x}+2 e^{-2 x}+3 e^{-3 x}+\ldots \ldots \ldots, \mathrm{x}$ >0. show that $\mathrm{f}(\mathrm{x})$ is continuous on $(-\mathrm{R}, \mathrm{R})$. Evalute $\int_{\log _{e}^{2}}^{\log _{e}^{3}} f(x) d x$
10. State and prove cauchys criteria for uniform convergence of the sequence of functions .
11. For the series $\sum_{n=1}^{\infty} f_{n(x)}$ where $f_{n}=n^{2} \mathrm{x} e^{-n^{2} x^{2}}-$ $(n-1)^{2} \mathrm{x} e^{-(n-1)^{2} x^{2}}, \mathrm{x} \in[0,1]$. Show that
12. $\sum_{1}^{\infty} \int_{0}^{1} f_{n(x) d x} \neq \int_{0}^{1}\left(\sum_{1}^{\infty} f_{n}(x)\right) d x$. Is the series $\sum_{1}^{\infty} f_{n(x)}$ uniformaly convergent on $[0,1]$?
13. Show that the sequence of functions $\left\{f_{n}(\mathrm{x})\right\}$ where f_{n} $(\mathrm{x})=\frac{n x}{1+n^{2} x^{2}}, \forall \mathrm{x} \in \mathbb{R}$ is not uniformalyconvergent in any interval [ab] which contains 0
14. let $\mathrm{D} \subset \mathbb{R}$ and let $\left.\left\{f_{n}\right]\right]$ be a sequence of
functionspointwise convergent to $\mathrm{f}(\mathrm{x})$.Let
$M_{n}=\underset{x \in D}{\operatorname{SUP}}\left|f_{n}(x)-f(x)\right|$. Then
showthat $\left\{f_{n}\right\}$ isuniformalyconvergentonD to $\mathrm{f}(\mathrm{x})$ if and only if $\lim _{n \rightarrow \infty} M_{n}=0$.
15. Assuming that the sum of the power series $\mathrm{x}-\frac{x^{2}}{2}+\frac{x^{3}}{3} \ldots \ldots$ on its interval of convergence is $\log _{e}(1+x)$ deduce that $\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\ldots \ldots .=2 \log 2-1$
16. Let $\mathrm{f}:[-\pi, \pi] \rightarrow \mathbb{R}$ be continuous except for at most a finite number of jumps is periodic of period 2π, then prove that $\frac{a_{0}{ }^{2}}{2}+\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right) \leq \frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(\mathrm{x}) d x \quad$ where $a_{k} a n d b_{k}$ are thef ourier coefficient of $\mathrm{f}(\mathrm{x})$ defined by

$$
\begin{aligned}
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t, n \geq 0 \\
b_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t, \text { forn } \geq 1
\end{aligned}
$$

17. Define a uniform continuity of a function on interval [a, b] show $\mathrm{f}(\mathrm{x})=\frac{1}{x}, \mathrm{x} \neq 0$ is not uniformaly continuous in $(0,1)$.
18. Using Cauchy s principle prove that $\lim _{x \rightarrow 0} \cos \frac{1}{x}$ does not exist .
19. Find $\overline{\lim } u_{n}$ and $\underline{\lim } u_{n}$ where $u_{n}=\mathrm{n}+\frac{(-1)^{n}}{n}$

END

